Jika a=lim_(x→2)⁡ (x^2+2x-8)/(x^2-x-2), maka nilai (4-a)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Jika \( \displaystyle a = \lim_{x \to 2} \ \frac{x^2-4}{2-\sqrt{x+2}}\), maka nilai \((4-a)\) adalah...

  1. -20
  2. -12
  3. -4
  4. 12
  5. 20

(UM UGM 2013)

Pembahasan:

\begin{aligned} a &= \lim_{x \to 2} \ \frac{x^2-4}{2-\sqrt{x+2}} \\[8pt] &= \lim_{x \to 2} \ \frac{x^2-4}{2-\sqrt{x+2}} \times \frac{2+\sqrt{x+2}}{2+\sqrt{x+2}} \\[8pt] &= \lim_{x \to 2} \ \frac{(x-2)(x+2)(2+\sqrt{x+2})}{4-(x+2)} \\[8pt] &= \lim_{x \to 2} \ \frac{(x-2)(x+2)(2+\sqrt{x+2})}{-(x-2)} \\[8pt] &= \lim_{x \to 2} \ -(x+2)(2+\sqrt{x+2}) \\[8pt] &= -(2+2)(2+\sqrt{2+2}) \\[8pt] a &= -16 \\[8pt] \Rightarrow (4-a) &= 4-(-16) = 20 \end{aligned}

Jawaban E.